翻訳と辞書
Words near each other
・ Grandpa Goes to Washington
・ Grandpa Graf's
・ Grandpa Green
・ Grandpa in My Pocket
・ Grandpa is Dead
・ Grandpa Jones
・ Grandpa Never Lies
・ Grandpa Read's Quiet Time Tales
・ Grandhotel Pupp
・ Grandi
・ Grandi cacciatori
・ Grandi domani
・ Grandi Giardini Italiani
・ Grandi magazzini
・ Grandi Stazioni
Grandi's series
・ Grandi's series in education
・ Grandia (series)
・ Grandia (video game)
・ Grandia II
・ Grandia III
・ Grandia Online
・ Grandia Xtreme
・ Grandicrepidula
・ Grandicrepidula collinae
・ Grandicrepidula grandis
・ Grandidier
・ Grandidier Channel
・ Grandidier's free-tailed bat
・ Grandidier's mongoose


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Grandi's series : ウィキペディア英語版
Grandi's series
In mathematics, the infinite series 1 - 1 + 1 - 1 + \dotsb, also written
:
\sum_^ (-1)^n

is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that it lacks a sum in the usual sense. On the other hand, its Cesàro sum is 1/2.
==Proof through integration==

To prove using integration, first we consider the indefinite integral of e^f(x) with respect to x for any function f by repeating integration by parts, with \frac=e^ and u=f(x), f'(x), f''(x), \dotsc :

\begin
\int e^x f(x)\, dx &= e^x f(x) - \int e^x f'(x)\, dx \\
&= e^x f(x) - e^x f'(x) + \int e^x f''(x)\, dx \\
&= e^x(f(x) - f'(x) + f''(x) - f(x) + \dotsb) + C
\end

Here, C is the constant of integration.
By letting f(x) = \sin x or \cos x, we will get a result relevant to solving the Grandi series G = 1 - 1 + 1 - 1 + \dotsb :

\begin
\int e^x \sin x\, dx &= e^x(\sin x - \cos x - \sin x + \cos x + \sin x - \cos x - \sin x + \cos x + \dotsb) \\
&= e^x(\sin x (1 - 1 + 1 - 1 + \dotsb) + \cos x(-1 + 1 - 1 + 1 + \dotsb)) + C \\
&= Ge^x(\sin x - \cos x) + C\end

We can also evaluate the integral using integration by parts with \frac=e^ and u = \sin,\cos . We treat the integral as a function I and realize that we have the same integral on both sides of the equation and add I to both sides and divide by two. Symbolically:

\begin
I &= \int e^x \sin x\, dx \\
&= e^x \sin x - \int e^ \cos x\, dx \\
&= e^x \sin x - e^x \cos x - \int e^x \sin x\, dx \\
&= e^x \sin x - e^x \cos x - I \\
&= \frac + C
\end

Comparing the results of evaluating the integral using both methods \int e^\sin x \, dx=Ge^(\sin-\cos x) + C
=\frac-\cos)} + C and thus G=1 - 1 + 1 - 1 + \dotsb = \frac.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Grandi's series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.